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Abstract. For a quasi-compact Kähler manifold𝑈 endowed with a nilpotent harmonic
bundlewhoseHiggs eld is injective at one point, we prove that𝑈 is pseudo-algebraically
hyperbolic, pseudo-Picard hyperbolic, and is of log general type. Moreover, we prove
that there is a nite unramied cover �̃� of 𝑈 from a quasi-projective manifold �̃� so
that any projective compactication of �̃� is pseudo-algebraically hyperbolic, pseudo-
Picard hyperbolic and is of general type. As a byproduct, we establish some criterion
of pseudo-Picard hyperbolicity and pseudo-algebraic hyperbolicity for quasi-compact
Kähler manifolds.
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0. Introduction

0.1. Main results. The notion of Picard hyperbolicity for quasi-compact Kähler man-
ifolds, which was introduced in [JK18,Den20b], is motivated by the classical big Picard
theorem, which states that a holomorphicmapΔ∗ → P1\{0, 1∞} extends as holomorphic
map to the whole disk Δ. Complex manifolds sharing this property with P1 \ {0, 1,∞}
are then said to be Picard hyperbolic. This notion turns out to be an important hyper-
bolicity property since it implies the algebraicity of analytic maps from quasi-projective
manifolds to Picard hyperbolic ones; this was rst proven in [JK18]. The study of Pi-
card hyperbolicity continues to have interesting developments: see e.g. the work of He–
Ru [HR21] where a quantitative version is introduced, or Etesse [Ete20], who introduces
a notion of intermediate Picard hyperbolicity, and gives applications to niteness prop-
erties of automorphism groups.

In [Den20b], the second named author proved the Picard hyperbolicity for quasi-
compact Kähler manifolds admitting a complex polarized variation of Hodge structures
(C-PVHS for short) whose period map has zero dimensional bers. C-PVHS is a sub-
category of nilpotent harmonic bundles. Our goal of this paper is to extend the results

Date: Friday 23rd July, 2021.
2010 Mathematics Subject Classication. 32H25, 14D07, 32H30, 32Q45.
Key words and phrases. Picard hyperbolicity, nilpotent harmonic bundles, holomorphic sectional cur-

vature, criterion for Picard hyperbolicity, Nevanlinna characteristic function, non-Kähler locus.
1



2 BENOÎT CADOREL AND YA DENG

in [Den20b] to manifolds admitting nilpotent harmonic bundles. The rst result is the
following.

Theorem A. Let 𝑈 be a quasi-compact Kähler manifold. Assume that there is a nilpo-
tent harmonic bundle (𝐸, 𝜃, ℎ) over 𝑈 so that 𝜃 : 𝑇𝑈 → End(𝐸) is injective at one point.
Then 𝑈 is pseudo-Picard hyperbolic, pseudo-algebraically hyperbolic, and is of log general
type. Moreover, 𝑈 can be equipped with a unique algebraic structure that makes it quasi-
projective, and any dominant meromorphic map from another complex quasi-projective
manifold to𝑈 is algebraic.

See Denitions 1.3, 1.4 and 1.6 for denitions of nilpotent harmonic bundles, pseudo-
algebraic hyperbolicity and pseudo-Picard hyperbolicity. Using ideas of [Den20b], we
can prove a stronger result on the hyperbolicity of compactications after taking nite
unramied cover of𝑈 , which is the main result of this paper.

Theorem B (⊂Theorem 6.1). Let 𝑈 be a quasi-compact Kähler manifold. Assume that
there is a nilpotent harmonic bundle (𝐸, 𝜃, ℎ) on 𝑈 so that 𝜃 : 𝑇𝑈 → End(𝐸) is injective
at one point. Then there is a nite unramied cover �̃� → 𝑈 from a quasi-projective man-
ifold �̃� so that any smooth projective compactication 𝑋 of �̃� is of general type, pseudo-
algebraically hyperbolic and pseudo-Picard hyperbolic.

The proofs of Theorems A and B both rely on some new criterion of pseudo-Picard
hyperbolicity and pseudo-algebraic hyperbolicity for quasi-compact Kähler manifolds,
which is a novelty of this paper.

Theorem C (⊂Theorem 3.1+Theorem 4.1). Let 𝑌 be a compact Kähler manifold, and let
𝐷 be a simple normal crossing divisor on 𝑌 . Assume that 𝑈 := 𝑌 − 𝐷 is equipped with a
pseudo-Kähler metric 𝜔 whose holomorphic sectional curvature is bounded from above by
a negative constant −2𝜋𝑐 , then
(i) 𝑈 is pseudo-algebraically hyperbolic and pseudo-Picard hyperbolic.
(ii) If the (1, 1) cohomology class 𝑐{𝜛} − {𝐷} is big, then 𝑌 is pseudo-Picard hyperbolic

and pseudo-algebraically hyperbolic. Here 𝜛 is the closed positive (1, 1)-current on 𝑌
which is the trivial extension of 𝜔 .

0.2. Related works. After the work [JK18], Picard hyperbolicity drew a lot of attention
over the last years. In [BBT18], the authors proved the algebraicity of analytic maps
from a quasi-projective manifold to another one admitting a quasi-nite period map.
In [DLSZ19] the second named author with Lu, Sun and Zuo proved the Picard hyper-
bolicity for moduli of polarizedmanifolds with semi-ample canonical sheaf. In [Den20b],
the second named author proved TheoremsA and Bwhen the nilpotent harmonic bundle
(𝐸, 𝜃, ℎ) is moreover a complex polarized variation of Hodge structures. Similar results
were later also obtained by Brotbek-Brunebarbe [BB20] and Brunebarbe [Bru20b]. In-
deed, this paper is strongly inspired by the works [Den20b, BB20, Bru20b]: the proof of
Theorem 3.1 is inspired by the SecondMain Theorem of Brotbek-Brunebarbe [BB20], es-
pecially by their study of Nevanlinna characteristic function relative to positive currents;
the proof of Theorem B follows the same line as that of [Den20b, Theorem B]. Though
the methods in [Den20b] and [BB20, Bru20b] are quite dierent, a common ingredient
is the use of Griths line bundle for systems of Hodge bundles, which has a nice global
positivity property. For nilpotent harmonic bundles, we do not have such analogous al-
gebraic objects, and thus the methods and results in [Den20b, BB20] cannot be applied
directly. A novelty in this paper is the use of a transcendental cohomology big class {𝜛}
(see Theorem 6.1 for the precise denition) which plays a similar role in the proof as
the Griths line bundle for complex variation of Hodge structures. This also enables us
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to simplify previous work [Den20b, BB20, Bru20b] since we do not use deep results in
Hodge theory such as Schmid’s nilpotent orbit theorems and Hodge norm estimates etc.

In [DLSZ19] the second named author with Lu, Sun and Zuo obtained the criterion for
Picard hyperbolicity in terms of a Finsler metric for𝑇𝑌 (− log𝐷) with a stronger curvature
property than the negativity of holomorphic sectional curvature. Indeed, we are not
sure that our new criterion for Picard hyperbolicity Theorem 3.1 still holds if 𝜔 is only
assumed to a (1, 1)-hermitian form; its global positivity is crucial in the proof.
Theorem 6.1 is a generalization of several earlier work, stemming from the seminal

paper of Mumford [Mum77], who proved that given an arithmetic lattice on a bounded
symmetric domain, then all compactications of quotients by sublattices of suciently
high index are of general type. It was then shown later by the work of Brunebarbe
[Bru20a], Rousseau [Rou16], the rst named author [Cad18] that these compactication
satisfy very strong algebraic or hyperbolicity properties. These results were later ex-
tended to varieties supporting variations of Hodge structures in [Den20b, Theorem B]
and [BB20,Bru20b]; Theorem 6.1 can be seen as a generalization of these last results for
varieties supporting nilpotent harmonic bundles.

After the completion of this paper, Yohan Brunebarbe informed us that they were able
to prove that the quasi-projective manifold𝑈 in Theorem A is of log general type in an
ongoing work with Jeremy Daniel towards the Shafarevich conjecture for open varieties.

0.3. Acknowledgment. The second named authorwould like to thank Professors Takuro
Mochizuki and Carlos Simpson, and Jeremy Daniel for very helpful discussions on the
proof of Proposition 6.4. Both the authors would like to thank Yohan Brunebarbe and
Damian Brotbek for their remarks and interest on this work.

Notations

• A complex manifold is called quasi-compact Kähler if it is the Zariski dense open set
of a compact Kähler manifold.

• For two real functions 𝑓 and 𝑔 on a complex manifold, we write 𝑓 & 𝑔 or 𝑔 . 𝑔 if
𝑓 ≥ 𝜀𝑔 for some constant 𝜀 > 0.

• A compact Kähler log pair (resp. projective log pair) (𝑌, 𝐷) consists of a compact Kähler
(resp. projective) manifold 𝑌 and a simple normal crossing divisor 𝐷 on 𝑌 .

• A map 𝜇 : (𝑋, �̃�) → (𝑌, 𝐷) between compact Kähler log pairs is called a log morphism
if 𝜇 : 𝑋 → 𝑌 is a holomorphic map with �̃� ⊂ 𝜇−1(𝐷).

• The unit disk is denoted by Δ and Δ∗ denotes the punctured unit disk.
• For any closed positive (1, 1) current 𝑇 on a compact Kähler manifold, we write {𝑇 }
for its cohomology class. For two cohomology (1, 1) class 𝛼 and 𝛽 , we write 𝛼 ≥ 𝛽 if
𝛼 − 𝛽 is pseudo eective.

• For a line bundle 𝐿 with a singular hermitian metric ℎ, its curvature current is denoted
by Θℎ (𝐿) := −ddc logℎ, where ddc := 𝑖

2𝜋 𝜕𝜕.

1. Technical preliminaries

In this section we rst recall the denitions of nilpotent harmonic bundles and alge-
braic hyperbolicity. We then state and prove some results on Picard hyperbolicity and
closed positive (1, 1) currents, which will be used throughout this paper.

1.1. Harmonic bundles.

Denition 1.1 (Higgs bundle). A Higgs bundle on a complex manifold 𝑌 is a pair (𝐸, 𝜃 )
consisting of a holomorphic vector bundle 𝐸 on 𝑌 and an O𝑌 -linear map

𝜃 : 𝐸 → 𝐸 ⊗ Ω1
𝑌
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so that 𝜃 ∧ 𝜃 = 0. The map 𝜃 is called the Higgs eld.

Denition 1.2 (Harmonic bundle). A harmonic bundle (𝐸, 𝜃, ℎ) consists of a Higgs bun-
dle (𝐸, 𝜃 ) and a hermitian metric ℎ for 𝐸 so that the connection

𝐷 := 𝐷ℎ + 𝜃 + 𝜃 ∗ℎ
is at. Here 𝐷ℎ is the Chern connection of (𝐸,ℎ), and 𝜃 ∗

ℎ
∈ 𝐶∞(𝑌, End(𝐸) ⊗ Ω0,1

𝑌
) is the

adjoint of 𝜃 with respect to ℎ.

Denition 1.3 (Nilpotent harmonic bundle). A harmonic bundle (𝐸, 𝜃, ℎ) is called nilpo-
tent if the characteristic polynomial det(𝑡 − 𝜃 ) = 𝑡 rank𝐸 .

Note that a complex polarized variation of Hodge structures induces a nilpotent har-
monic bundle.

1.2. Algebraic hyperbolicity. Algebraic hyperbolicity for a compact complex man-
ifold was introduced by Demailly in [Dem97a, Denition 2.2]. He proved in [Dem97a,
Theorem 2.1] that a compact complexmanifold is algebraically hyperbolic if it is Kobayashi
hyperbolic. The notion of algebraic hyperbolicity was generalized to log pairs by Chen
[Che04].

Denition 1.4 (Pseudo-algebraic hyperbolicity). Let (𝑌,𝜔𝑌 ) be a compact Kähler man-
ifold and let 𝐷 be a simple normal crossing divisor on 𝑌 . For any reduced irreducible
curve 𝐶 ⊂ 𝑌 such that 𝐶 ⊄ 𝐷 , we denote by 𝑖𝑌 (𝐶, 𝐷) the number of distinct points in
the set 𝜈−1(𝐷), where 𝜈 : 𝐶 → 𝐶 is the normalization of𝐶 . Assume that 𝑍 ( 𝑌 is Zariski
closed proper subset of 𝑌 . If there is 𝜀 > 0 so that

2𝑔(𝐶) − 2 + 𝑖𝑌 (𝐶, 𝐷) ≥ 𝜀deg𝜔𝑌𝐶 := 𝜀
∫
𝐶

𝜔𝑌

for all reduced irreducible curve 𝐶 ⊂ 𝑌 not contained in 𝑍 ∪ 𝐷 , (𝑌, 𝐷) is called alge-
braically hyperbolic modulo 𝑍 , and pseudo-algebraically hyperbolic. If 𝑍 = ∅, (𝑌, 𝐷) is
called algebraically hyperbolic.

Note that the number 2𝑔(𝐶) − 2+ 𝑖𝑌 (𝐶, 𝐷) depends only on the intersection of𝐶 with
the complement 𝑌 − 𝐷 . Hence the above notion of hyperbolicity also makes sense for
quasi-projective manifolds: we say that a quasi-projective manifold 𝑈 is algebraically
hyperbolic if it has a log compactication (𝑌, 𝐷) which is algebraically hyperbolic.

However, it is unclear to us if Demailly’s theorem extends to the non-compact case,
i.e. if Kobayashi hyperbolicity, or Picard hyperbolicity, of 𝑌 −𝐷 will imply the algebraic
hyperbolicity of (𝑌, 𝐷). Note that Pacienza-Rousseau [PR07] have proved that if 𝑌 − 𝐷
is hyperbolically embedded into 𝑌 , the log pair (𝑌, 𝐷) (and thus 𝑌 − 𝐷) is algebraically
hyperbolic.

1.3. Picard hyperbolicity. Let us rst recall the denition of Picard hyperbolicity in-
troduced in [Den20b]. We start with the following denition of admissible coordinate
systems which will be used frequently.

Denition 1.5. (Admissible coordinates) Let 𝑌 be an 𝑛-dimensional complex mani-
fold, and let 𝐷 be a simple normal crossing divisor. Let 𝑝 be a point of 𝑌 , and assume
that {𝐷 𝑗 } 𝑗=1,...,ℓ are the components of 𝐷 containing 𝑝 . An admissible coordinate sys-
tem around 𝑝 is a tuple (Ω; 𝑧1, . . . , 𝑧𝑛;𝜑) (or simply (Ω; 𝑧1, . . . , 𝑧𝑛) if no confusion arises)
where

• Ω is an open subset of 𝑌 containing 𝑝 .
• 𝜑 is a holomorphic isomorphism 𝜑 : Ω → Δ𝑛 so that 𝜑 (𝐷 𝑗 ) = (𝑧 𝑗 = 0) for any
𝑗 = 1, . . . , ℓ .
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Denition 1.6 (pseudo-Picard hyperbolicity). Let 𝑈 be a quasi-compact Kähler mani-
fold, and let 𝑌 be a smooth Kähler compactication. 𝑈 is called pseudo-Picard hyperbolic
if there is a Zariski closed proper subset𝑍 ( 𝑈 so that any holomorphic map 𝑓 : Δ∗ → 𝑈

with 𝑓 (Δ∗) ⊄ 𝑍 extends to a holomorphic map 𝑓 : Δ → 𝑌 . We also say that 𝑈 is Picard
hyperbolic modulo 𝑍 . If 𝑍 = ∅,𝑈 is simply called Picard hyperbolic.

In [Den20b, Lemma 4.3] we proved that Denition 1.6 does not depend on the com-
pactication of𝑈 when𝑍 = ∅. The proof of this statement is based on the deep extension
theorem of meromorphic maps by Siu [Siu75], and is also valid when 𝑍 is not empty. Let
us now give some interesting properties of pseudo-Picard hyperbolic manifolds, which
generalizes [Den20b, Lemma 4.3].

Proposition 1.7. Let 𝑈 , 𝑌 be as in Denition 1.6, and assume that 𝑈 is pseudo-Picard
hyperbolic. Let 𝑋 be a compact complex manifold and let 𝐷 be a simple normal crossing
divisor on 𝑋 . If there is a meromorphic map 𝑓 : 𝑋 −𝐷 d 𝑈 which is dominant, that is, its
image contains a non-empty open set of 𝑈 , then 𝑓 extends to a meromorphic map 𝑋 d 𝑌 .
In particular,

(i) any compact complex manifold containing 𝑈 as a Zariski dense open set is bimero-
morphic to 𝑌 .

(ii) the pseudo-Picard hyperbolicity of𝑈 in Denition 1.6 does not depend on the compact-
ication 𝑌 .

Proof. Write 𝑉 := 𝑋 − 𝐷 . To prove that 𝑓 extends to a meromorphic map 𝑋 d 𝑌 , it
suces to check that locally around 𝐷 . By [Siu75, Theorem 1], any meromorphic map
from a Zariski open set𝑊 ◦ of a complex manifold𝑊 to a compact Kähler manifold 𝑌
extends to a meromorphic map from𝑊 to 𝑌 provided that the codimension of𝑊 −𝑊 ◦

is at least 2. It then suces to consider the extensibility of 𝑓 around smooth points on
𝐷 . Pick any such point 𝑥 ∈ 𝐷 and choose admissible coordinates (Ω;𝑥1, . . . , 𝑥𝑛) around
𝑥 so that Ω∩𝐷 = (𝑥1 = 0). The theorem follows if we can prove that 𝑓 : Δ∗ ×Δ𝑛−1 d 𝑈

extends to a meromorphic map Δ𝑛+1 d 𝑌 . Let 𝑍 be the Zariski closed proper subset of 𝑌
as inDenition 1.6. Denote by 𝑆 the subvariety ofΔ∗×Δ𝑛−1 of codimension at least two so
that 𝑓 is not a holomorphic map. Since 𝑓 is assumed to be dominant, there is thus a dense
open set𝑊 ⊂ Δ𝑛−1 so that for any 𝑧 ∈𝑊 , Δ∗ × {𝑧} ⊄ 𝑆 and 𝑓 (Δ∗ × {𝑧} − 𝑆) ⊄ 𝑍 . Then
the restriction 𝑓 |:Δ∗×{𝑧} : Δ∗× {𝑧} d 𝑈 is well-dened, which is moreover holomorphic.
Since 𝑈 is Picard hyperbolic modulo 𝑍 , 𝑓 : Δ∗ × {𝑧} → 𝑈 then extends to Δ × {𝑧} → 𝑌

for 𝑧 ∈𝑊 . It then follows from [Siu75, p.442, (∗)] that 𝑓 extends to a meromorphic map
𝑓 : Δ𝑛 d 𝑌 . We thus can conclude that 𝑓 : 𝑋 − 𝐷 d 𝑈 extends to a meromorphic map
𝑋 d 𝑌 .

Let𝑌 ′ be another compact complex manifold containing𝑈 as a Zariski dense open set.
We can apply the Hironaka theorem on resolution of singularities to assume that 𝑌 ′−𝑈
is a simple normal crossing divisor. By the above result, the identity map of 𝑈 extends
to a meromorphic map 𝑌 ′ d 𝑌 which is thus bimeromorphic. The second statement
follows, which also implies the last claim. �

1.4. Closed positive (1, 1)-currents. In this subsectionwe rst recall some results con-
cerning closed positive (1, 1)-currents (see [Dem12a]). We then prove Lemma 1.15 which
will be crucial in the proofs of our main results.

Denition 1.8 (Pseudo-Kähler metric). Let 𝑋 be a complex manifold. A (1, 1)-form 𝜔

on𝑋 is called a pseudo-Kähler metric (or pseudo-Kähler form) if𝑑𝜔 = 0,𝜔 is semipositive,
and strictly positive on a Zariski open set of 𝑋 .

Denition 1.9. Let (𝑋,𝜔) be a compact Kähler manifold. Let 𝛼 ∈ 𝐻 1,1(𝑋,R) be a co-
homology (1, 1)-class of 𝑋 . The class 𝛼 is nef if for any 𝜀 > 0 there is a smooth closed
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(1, 1)-form 𝜂𝜀 ∈ 𝛼 so that 𝜂𝜀 ≥ −𝜀𝜔 . The class 𝛼 is pseudo-eective if there is a closed
positive (1, 1)-current 𝑇 ∈ 𝛼 . 𝛼 is called big if there is a closed positive (1, 1)-current
𝑇 ∈ 𝛼 so that 𝑇 ≥ 𝛿𝜔 for some 𝛿 > 0. Such a current 𝑇 will be called a Kähler current.

For two cohomology (1, 1) classes 𝛼 and 𝛽 , we write 𝛼 ≥ 𝛽 if 𝛼−𝛽 is a pseudo-eective
class.

Boucksom’s criterion [Bou02] asserts that a class 𝛼 is big if there is a closed positive
current 𝑇 ∈ 𝛼 so that

∫
𝑋
(𝑇ac)dimX > 0, where 𝑇ac denotes the absolutely continuous part

of 𝑇 with respect to any smooth measure on 𝑋 .
The non-Kähler locus 𝐸𝑛𝐾 (𝛼) of a big class 𝛼 introduced by Boucksom [Bou04] mea-

sures how far 𝛼 is from being Kähler. It is the transcendental generalization of the aug-
mented base locus for big line bundles.
Denition 1.10 (non-Kähler locus). Let 𝑋 be a compact Kähler manifold and let 𝛼 be a
big class on 𝑋 . The non-Kähler locus 𝐸𝑛𝐾 (𝛼) of 𝛼 is

𝐸𝑛𝐾 (𝛼) :=
⋂
𝑇∈𝛼

Sing(𝑇 ),

where the intersection ranges over all Kähler currents 𝑇 ∈ 𝛼 , and Sing(𝑇 ) is the com-
plement of the set of points 𝑥 ∈ 𝑋 such that 𝑇 is smooth around 𝑥 .

Let us quote the following result by Boucksom [Bou04, Theorem 3.17].
Theorem 1.11 (Boucksom). Let 𝛼 be a big class on a compact Kähler manifold. Then its
non-Kähler locus 𝐸𝑛𝐾 (𝛼) is a proper analytic subvariety. Moreover, there is a Kähler current
𝑇 ∈ 𝛼 with analytic singularities which is smooth outside 𝐸𝑛𝐾 (𝛼). �

If the class 𝛼 is big and nef, in [CT15] Collins-Tosatti proved the following theorem on
the characterization of its non-Kähler locus 𝐸𝑛𝐾 (𝛼). It is a transcendental generalization
of the Nakamaye theorem.
Theorem 1.12 (Collins-Tosatti). Let (𝑋,𝜔) be a compact Kähler manifold. Let 𝛼 be a big
and nef (1, 1) class on 𝑋 . Then

𝐸𝑛𝐾 (𝛼) = Null(𝛼) :=
⋃

∫
𝑍
𝛼dim𝑍=0

𝑍(1.1)

where the union is taken over all positive dimensional irreducible analytic subvarieties 𝑍
in 𝑌 . �

Let us recall the following extension theorem of Skoda (see e.g. [Dem12b, (2.4) The-
orem]) which will be used frequently.
Theorem 1.13 (Skoda). Let 𝑋 be a (not necessarily compact) complex manifold and let 𝐴
be a closed analytic subset of 𝑋 . Assume that 𝑇 is a closed positive (𝑝, 𝑝)-current dened
on 𝑋 − 𝐴 so that 𝑇 has locally nite mass in a neighborhood of any point of 𝐴. Then the
trivial extension of 𝑇 , denoted by 𝑇 , is also a closed positive (𝑝, 𝑝)-current on 𝑋 . �

Recall that 𝑇 is dened as follows. For any smooth test (𝑛 − 1, 𝑛 − 1)-form 𝜂, we let

𝑇 (𝜂) :=
∫
𝑋−𝐴

𝑇 ∧ 𝜂.(1.2)

In particular, Skoda’s theorem implies the following result due to Bishop [Bis64, The-
orem 3], which will be used to prove Lemma 3.3.
Theorem 1.14 (Bishop). Let 𝑋 be a (not necessarily compact) complex manifold and let𝐴
be a closed analytic subset of 𝑋 . Let 𝑉 be an analytic subset of pure dimension 𝑝 of 𝑋 −𝐴.
Assume that 𝑉 has locally nite volume near 𝐴. Then the topological closure 𝑉 of 𝑉 is an
analytic subset of 𝑋 . �
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The following result, which is a variant of in [Den20a, Lemma 5.4], will be crucial
throughout this paper.

Lemma 1.15. Let (𝑌, 𝐷) be a compact Kähler log pair. Let 𝜔 be a pseudo-Kähler form
on 𝑈 := 𝑌 − 𝐷 with holomorphic sectional curvature bounded from above by a negative
constant. Then

(i) the trivial extension of 𝜔 , denoted by 𝜛, is a closed positive current;
(ii) the cohomology class {𝜛} is big and nef;
(iii) for any admissible coordinates (Ω; 𝑧1, . . . , 𝑧𝑛), the local potential 𝜙 of 𝜛 = ddc𝜙 satis-

es

𝜙 & − log
( ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2)
)
.(1.3)

Proof. Pick any point 𝑥 ∈ 𝐷 , and choose admissible coordinates (Ω; 𝑧1, . . . , 𝑧𝑛) centered
at 𝑥 so that 𝐷 ∩ Ω = (𝑧1 · · · 𝑧ℓ = 0). Since the holomorphic sectional curvature of
𝜔 is bounded from above by a negative constant, by Ahlfors-Schwarz lemma, we can
use [Cad16, Proposition 3.1.2], which implies that there is a constant 𝛿 > 0 so that

1
𝛿
𝜔 ≤ 𝜔𝑃 :=

ℓ∑︁
𝑗=1

√
−1𝑑𝑧 𝑗 ∧ 𝑑𝑧 𝑗

|𝑧 𝑗 |2(log |𝑧 𝑗 |2)2
+

𝑛∑︁
𝑘=ℓ+1

√
−1𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘
(1 − |𝑧𝑘 |2)2

.(1.4)

Consequently, the local mass of 𝜔 is bounded. By Skoda’s theorem, its trivial extension
𝜛 is a closed positive current. Since

∫
𝑌−𝐷 𝜔

𝑛 > 0, by Boucksom’s criterion, {𝜛} is big.
Since 𝜙 is a closed positive (1, 1)-current, there is a psh function 𝜙 on Ω so that ddc𝜙 =

𝜛. Now, by the very denition of trivial extension (1.2), 𝜛 ≤ 𝛿𝜔𝑃 . Note that

𝜔𝑃 = −ddc log
( ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2) ·
𝑛∏

𝑘=ℓ+1
(1 − |𝑧𝑘 |2)

)
.

Since 𝛿𝜔𝑃 −𝜛 ≥ 0, the function

−𝛿ddc log
( ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2) ·
𝑛∏

𝑘=ℓ+1
(1 − |𝑧𝑘 |2)

)
− 𝜙

is thus a psh function, and as such, it is locally bounded from above. The inequality (1.3)
then follows. Therefore, 𝜛 has zero Lelong numbers everywhere. By the regularization
theorem for closed positive currents of Demailly (see [Dem92, Corollary 6.4]), the class
{𝜛} is nef. The lemma is proved. �

The following result due to Brunebarbe [Bru20b, Proposition 3.3] will be used to prove
Theorem 6.1.(i). For completeness sake, we provide a proof here.

Lemma 1.16. Let (𝑌, 𝐷) be a compact Kähler log-pair, and let 𝜔 be a pseudo-Kähler form
on𝑈 := 𝑌−𝐷 so that it has non-positive holomorphic bisectional curvature and holomorphic
sectional curvature bounded from above by a negative constant −2𝜋𝑐 . Then the class 𝐾𝑌 +
𝐷 − 𝑐{𝜛} is pseudo-eective.

Proof. Let𝑈0 be the Zariski open set of𝑈 so that𝜔 is strictly positive denite. Since𝜔 has
non-positive holomorphic bisectional curvature and holomorphic sectional curvature
bounded from above by a negative constant −2𝜋𝑐 , one has

−Ric(𝜔) ≥ 2𝜋𝑐𝜔.

Let ℎ𝐾𝑌+𝐷 be the singular hermitian metric on 𝐾𝑌 + 𝐷 induced by 𝜔 . We will prove that
its curvature current Θℎ𝐾𝑌 +𝐷 (𝐾𝑌 + 𝐷) is positive.
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Pick any point 𝑥 ∈ 𝐷 , and choose admissible coordinates (Ω; 𝑧1, . . . , 𝑧𝑛) centered at
𝑥 so that 𝐷 ∩ Ω = (𝑧1 · · · 𝑧ℓ = 0). Then for the local frame 𝜎 := 𝑑 log 𝑧1 ∧ · · ·𝑑 log 𝑧ℓ ∧
𝑑𝑧ℓ+1 ∧ · · · ∧ 𝑑𝑧𝑛 of 𝐾𝑌 + 𝐷 |Ω, one has

𝑒−𝜑 := |𝜎 |2
ℎ𝐾𝑌 +𝐷

=
𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛

|𝑧1 · · · 𝑧ℓ |2𝜔𝑛
&

ℓ∏
𝑗=1

(− log |𝑧𝑖 |2)

where the last inequality follows from (1.4). Hence the local potential 𝜑 of ℎ𝐾𝑌+𝐷 = 𝑒−𝜑

is always locally bounded. One the other hand, ddc𝜑 = − 1
2𝜋Ric(𝜔) ≥ 0 over the Zariski

dense open set 𝑈0. This implies that the curvature current Θℎ𝐾𝑌 +𝐷 (𝐾𝑌 + 𝐷) = ddc𝜑 is
positive everywhere. On the other hand, since 𝜛 is the trivial extension of 𝜔 , one has
thus

Θℎ𝐾𝑌 +𝐷 (𝐾𝑌 + 𝐷) ≥ 𝑐𝜛.(1.5)

The lemma follows. �

2. Pseudo-Kähler metrics induced by nilpotent harmonic bundles

In this section we prove that the nilpotent harmonic bundle on a complex manifold
𝑈 induces a pseudo-Kähler metric with nice curvature properties similar to the case of
period domains.

Proposition 2.1. Assume that 𝑈 is a complex manifold that supports a harmonic bundle
(𝐸, 𝜃, ℎ) so that 𝜃 : 𝑇𝑈 → End(𝐸) is injective at one point. Then𝑈 admits a pseudo-Kähler
metric𝜔 with non-positive holomorphic bisectional curvature. If (𝐸, 𝜃, ℎ) is moreover nilpo-
tent, then the holomorphic sectional curvature of 𝜔 is bounded from above by − 1

4rank𝐸−1 .

Proof. We dene a metric ℎ𝑈 as the pullback metric of ℎ by the map𝑇𝑈
𝜃→ End(𝐸). This

gives
ℎ𝑈 (𝜉1, 𝜉2) := 〈𝜃 (𝜉1), 𝜃 (𝜉2)〉ℎ

for any 𝜉1, 𝜉2 ∈ 𝑇𝑈 . The fundamental (1, 1)-form 𝜔 relative to ℎ𝑈 can thus be written as

𝜔 = −𝑖tr(𝜃 ∗
ℎ
∧ 𝜃 ),(2.1)

which shows that𝜔 ≥ 0. Since 𝜃 : 𝑇𝑈 → End(𝐸) is immersive at one point,𝜔 is therefore
strictly positive at a general point. Moreover,

𝑑𝜔 = −𝑖𝑑tr(𝜃 ∗
ℎ
∧ 𝜃 ) = −𝑖tr(𝐷ℎ𝜃 ∗ℎ ∧ 𝜃 ) + 𝑖tr(𝜃

∗
ℎ
∧ 𝐷ℎ𝜃 )

where 𝐷ℎ is the Chern connection of (𝐸,ℎ). Note that 𝐷ℎ𝜃 = 0 = 𝐷ℎ𝜃
∗
ℎ
, hence 𝑑𝜔 = 0.

Thus 𝜔 is a pseudo-Kähler form.
Let 𝑝 ∈ 𝑈 so that𝑇𝑈 → End(𝐸) is injective. Pick local coordinates (𝑧1, . . . , 𝑧𝑛) centered

at 𝑝 , and set 𝜃𝑖 := 𝜃 ( 𝜕
𝜕𝑧𝑖
). Denote by 𝜃 ∗𝑖 the adjoint of 𝜃𝑖 with respect to ℎ. Write 𝑅 to be

the curvature tensor of 𝜔 , and denote by 𝑅End(𝐸) the curvature tensor of End(𝐸) induced
by the harmonic metric ℎ. By the curvature decreasing properties of subbundles, the
holomorphic bisectional curvature in the direction 𝜕

𝜕𝑧𝑖
and 𝜕

𝜕𝑧 𝑗
is

𝑅𝑖 𝑗 𝑗𝑖 : = 〈𝑅𝑖 𝑗 (
𝜕

𝜕𝑧 𝑗
), 𝜕
𝜕𝑧𝑖

〉ℎ𝑈 ≤ 〈𝑅End(𝐸)
𝑖 𝑗

(𝜃 𝑗 ), 𝜃𝑖〉ℎ .

By the atness of 𝐷ℎ + 𝜃 + 𝜃 ∗ℎ , we have 𝑅
𝐸

𝑖 𝑗
= −[𝜃𝑖, 𝜃 ∗𝑗 ], so 𝑅

End(𝐸)
𝑖 𝑗

(𝜃𝑘) = −[[𝜃𝑖, 𝜃 ∗𝑗 ], 𝜃𝑘].
This gives
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𝑅𝑖 𝑗 𝑗𝑖 ≤ −〈[[𝜃𝑖, 𝜃 ∗𝑗 ], 𝜃 𝑗 ], 𝜃𝑖〉ℎ
= −tr( [[𝜃𝑖, 𝜃 ∗𝑗 ], 𝜃 𝑗 ]𝜃 ∗𝑖 )
= −tr( [𝜃𝑖, 𝜃 ∗𝑗 ] [𝜃 𝑗 , 𝜃 ∗𝑖 ])
= −|[𝜃𝑖, 𝜃 ∗𝑗 ] |2 ≤ 0.

We conclude that 𝜔 has non-positive holomorphic bisectional curvature at any point
𝑝 ∈ 𝑈 where 𝜃 is injective.

Assume now (𝐸, 𝜃, ℎ) is moreover nilpotent. Then 𝜃𝑖 : 𝐸𝑥 → 𝐸𝑥 is a nilpotent endo-
morphism for each 𝑖 and 𝑥 ∈ 𝑈 . Recall that the holomorphic sectional curvature in the
direction 𝜕

𝜕𝑧𝑖
is dened by

𝐾 ( 𝜕
𝜕𝑧𝑖

) := 𝑅𝑖𝑖𝑖𝑖

| 𝜕
𝜕𝑧𝑖

|4
≤

−|[𝜃𝑖, 𝜃 ∗𝑖 ] |2

|𝜃𝑖 |4

Since 𝜃𝑖 is nilpotent, by Lemma 2.2 below, one has

| [𝜃𝑖, 𝜃 ∗𝑖 ] | ≥
|𝜃𝑖 |2

2rank𝐸−1
.

This proves that

𝐾 ( 𝜕
𝜕𝑧𝑖

) ≤ − 1
4rank𝐸−1

.

Since the local coordinate is arbitrary, this proves that the holomorphic sectional curva-
ture of 𝜔 is bounded from above by − 1

4rank𝐸−1 . �

The following lemma of linear algebra was outlined in [Sim92, p. 27].

Lemma 2.2. Let 𝐴 be a nilpotent 𝑛 × 𝑛-matrix with values in the complex numbers, and
let 𝐻 be an hermitian denite positive matrix of size 𝑛. Let 𝐴∗ := 𝐻 𝑡𝐴𝐻−1 be the adjoint of
𝐴 with respect to 𝐻 . Then | [𝐴,𝐴∗] |𝐻 ≥ 1

2𝑛−1 |𝐴|
2
𝐻
, where |𝐴|2

𝐻
= 1

2𝑛−1 tr(𝐴𝐴
∗).

Proof. Since𝐴 is nilpotent, there is a strictly decreasing agC𝑛 = 𝐹0 ) 𝐹1 ) . . . ) 𝐹𝑚 = 0
(𝑚 ≤ 𝑛) and such that 𝐴𝐹𝑖 ⊂ 𝐹𝑖+1. Applying the standard orthonormalization process,
we may assume that the ag (𝐹𝑖) is adapted to a 𝐻 -unitary base of C𝑛 . Changing the
standard base to this new base, we may now assume that 𝐴 is strictly upper triangular,
and 𝐻 is the identity.

Write 𝐴 := (𝑎𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛 . Denote by [𝐴,𝐴∗] := (𝑏𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛 . Since 𝐴 is strictly upper
triangular, then

𝑏𝑖𝑖 =

𝑛∑︁
𝑗=𝑖+1

|𝑎𝑖 𝑗 |2 −
𝑖−1∑︁
𝑘=1

|𝑎1𝑘 |2.

Set 𝑐𝑖 :=
∑𝑛
𝑗=𝑖+1 |𝑎𝑖 𝑗 |2. Then

∑𝑛−1
𝑖=1 𝑐𝑖 = |𝐴|2. There exists an integer𝑚 with 1 ≤ 𝑚 ≤ 𝑛 − 1

so that
𝑐𝑖 <

1
2𝑛−𝑖

|𝐴|2

for 𝑖 < 𝑚 and
𝑐𝑚 ≥ 1

2𝑛−𝑚
|𝐴|2.

Note that 𝑏𝑖𝑖 ≥ 𝑐𝑖 −
∑𝑖−1
𝑗=1 𝑐 𝑗 . This implies

𝑏𝑚𝑚 ≥ 1
2𝑛−1

|𝐴|2.

The lemma follows from the fact that | [𝐴,𝐴∗] |2 ≥ |𝑏𝑚𝑚 |2. �
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3. Criterion for Picard hyperbolicity

In this section we will establish our criterion for pseudo-Picard hyperbolicity of quasi-
compact Kähler manifolds. Theorems 3.1.(i) and 3.1.(ii) will be used to prove Theorems A
and B respectively. Their proofs are inspired by the Second Main theorem of Brotbek-
Brunebarbe [BB20] and by [Yam19, Lemma 5.1]. Since we work on Kähler manifolds
rather than projective ones, we have to establish the criterion on removable singularities
of holomorphic maps from punctured disks into compact Kähler manifold in term of the
growth of Nevanlinna characteristic functions (see Lemma 3.3).

Theorem 3.1. Let 𝑌 be a compact Kähler manifold, and let 𝐷 be a simple normal crossing
divisor on 𝑌 . Assume that 𝑈 := 𝑌 − 𝐷 is equipped with a pseudo-Kähler metric 𝜔 whose
holomorphic sectional curvature is bounded from above by a negative constant −2𝜋𝑐 , then
(i) 𝑈 is Picard hyperbolic modulo the non-Kähler locus 𝐸𝑛𝐾 ({𝜛}). Here 𝜛 is the closed

positive (1, 1)-current on 𝑌 which is the trivial extension of 𝜔 , and its cohomology
class {𝜛} is big. Moreover,

𝐸𝑛𝐾 ({𝜛}) ⊂ 𝑌 − {𝑦 ∈ 𝑈 | 𝜔 is strictly positive at 𝑦}.(3.1)

(ii) If 𝑐{𝜛} − {𝐷} is a big class, then 𝑌 is Picard hyperbolic modulo 𝐸𝑛𝐾 (𝑐{𝜛} − {𝐷}) ∪𝐷 .

Proof. Our rst stepwill be to prove an inequality similar to the Arakelov-Nevanlinna in-
equality of [BB20, Theorem 4.1] (see (3.5)). The method of using a current with Poincaré
singularities to dene a rst Nevanlinna characteristic function is essentially the same;
the arguments can be explained quite shortly in our context so we will recall them for
completeness.

For any 𝑓 : Δ∗ → 𝑌 with 𝑓 (Δ∗) ⊄ 𝐷 , write 𝑓 ∗𝜔 = 𝑖𝜎 (𝑧)𝑑𝑧 ∧ 𝑑𝑧. Since 𝜔 has negative
holomorphic sectional curvature, 𝜎 (𝑧) ∈ 𝐿1loc(Δ

∗), and

ddc log |𝑓 ′|2𝜔 ≥ 𝑐 𝑓 ∗𝜔(3.2)

outside 𝑓 −1(𝐷). Indeed, let 𝑧0 ∈ Δ∗ be so that 𝑓 (𝑧0) ∈ 𝐷 . By the Ahlfors-Schwarz lemma,
around 𝑧0 we have

𝜎 (𝑧) . 1
|𝑧 − 𝑧0 |2(log |𝑧 − 𝑧0 |2)2

.

If 𝜙 is a local potential for 𝜔 , this shows that log𝜎 (𝑧) − 𝑓 ∗𝜙 + log |𝑧 − 𝑧0 |2 is locally
bounded from above near 𝑧0, and thus extends as a psh function on the whole disk.
Applying the 𝑑𝑑𝑐-operator, one gets the inequality of (1, 1)-currents

ddc log𝜎 (𝑧) ≥ 𝑖𝜎 (𝑧)𝑑𝑧 ∧ 𝑑𝑧 − [𝑓 −1𝐷] .

Here 𝑓 −1𝐷 is the reduced divisor on Δ∗, and [𝑓 −1𝐷] is the associated current. In other
words,

ddc log |𝑓 ′|2𝜔 ≥ 𝑐 𝑓 ∗𝜔 − [𝑓 −1(𝐷)] .(3.3)

holds over the whole Δ∗.
We now change our model of the disk into Δ∗ := {𝑧 ∈ C | 1 < |𝑧 | < ∞} by taking

𝑧 ↦→ 1
𝑧
, and dene a Nevanlinna characteristic function

𝑇𝑓 ,𝜔 (𝑟 ) :=
∫ 𝑟

2

𝑑𝑡

𝑡

∫
Δ2,𝑡

𝑓 ∗𝜔

where Δ2,𝑡 := {𝑧 ∈ Δ∗ | 2 < |𝑧 | < 𝑡}.
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By Jensen formula, one has∫ 𝑟

2

𝑑𝑡

𝑡

∫
Δ2,𝑡

ddc log |𝑓 ′|2𝜔 =

∫ 2𝜋

0
log |𝑓 ′(𝑟𝑒𝑖𝜃 ) |𝜔

𝑑𝜃

2𝜋
−
∫ 2𝜋

0
log |𝑓 ′(2𝑒𝑖𝜃 ) |𝜔

𝑑𝜃

2𝜋
(3.4)

− 2 log
𝑟

2

∫ 2𝜋

0

𝜕 log |𝑓 ′|𝜔 (2𝑒𝑖𝜃 )
𝜕𝑟

𝑑𝜃

2𝜋
.

Using concavity of log, we have∫ 2𝜋

0
log |𝑓 ′(𝑟𝑒𝑖𝜃 ) |𝜔

𝑑𝜃

2𝜋
≤ 1

2
log

∫ 2𝜋

0
|𝑓 ′(𝑟𝑒𝑖𝜃 ) |2𝜔

𝑑𝜃

2𝜋
.

Note that
1

2𝜋𝑟
𝑑

𝑑𝑟
(𝑟 𝑑
𝑑𝑟
𝑇𝑓 ,𝜔 (𝑟 )) =

∫ 2𝜋

0
|𝑓 ′(𝑟𝑒𝑖𝜃 ) |2𝜔

𝑑𝜃

2𝜋
.

Since 𝑇𝑓 ,𝜔 (𝑟 ) and 𝑟 𝑑𝑑𝑟𝑇𝑓 ,𝜔 (𝑟 ) are both monotone increasing functions, we apply Borel’s
lemma [NW14, Lemma 1.2.1] twice so that, for any 𝛿 > 0 one has

log
( 𝑑
𝑑𝑟

(𝑟 𝑑
𝑑𝑟
𝑇𝑓 ,𝜔 (𝑟 ))

)
≤ (1 + 𝛿) log

(
𝑟
𝑑

𝑑𝑟
𝑇𝑓 ,𝜔 (𝑟 )

)
‖

= (1 + 𝛿) log 𝑟 + (1 + 𝛿) log
( 𝑑
𝑑𝑟
𝑇𝑓 ,𝜔 (𝑟 )

)
‖

≤ (1 + 𝛿) log 𝑟 + (1 + 𝛿)2 log𝑇𝑓 ,𝜔 (𝑟 ) ‖
Here ‖ means that the inequality holds outside a Borel set 𝐸 ⊂ (2,∞) of nite Lebesgue
measure. The above inequalities yield

1
2
log

∫ 2𝜋

0
|𝑓 ′(𝑟𝑒𝑖𝜃 ) |2𝜔

𝑑𝜃

2𝜋
≤ (1 + 𝛿)2

2
log𝑇𝑓 ,𝜔 (𝑟 ) +

𝛿

2
log 𝑟 − 1

2
log(2𝜋) ‖ .

Putting this into (3.4), we get∫ 𝑟

2

𝑑𝑡

𝑡

∫
Δ2,𝑡

ddc log |𝑓 ′|2𝜔 ≤ (1 + 𝛿)2
2

log𝑇𝑓 ,𝜔 (𝑟 ) +
𝛿

2
log 𝑟 − 1

2
log(2𝜋)

−
∫ 2𝜋

0
log |𝑓 ′(2𝑒𝑖𝜃 ) |𝜔

𝑑𝜃

2𝜋
− 2 log

𝑟

2

∫ 2𝜋

0

𝜕 log |𝑓 ′|𝜔 (2𝑒𝑖𝜃 )
𝜕𝑟

𝑑𝜃

2𝜋
. ‖.

By (3.3), this implies the requested inequality

𝑐1 log𝑇𝑓 ,𝜔 (𝑟 ) + 𝑐2 log 𝑟 + 𝑐3 ≥ 𝑐𝑇𝑓 ,𝜔 (𝑟 ) − 𝑁 [1]
𝑓 ,𝐷

(𝑟 ) ‖(3.5)

for some positive constants 𝑐1, 𝑐2, 𝑐3. Here 𝑁 [1]
𝑓 ,𝐷

(𝑟 ) is the truncated counting function
dened by

𝑁
[1]
𝑓 ,𝐷

(𝑟 ) :=
∫ 𝑟

2

𝑑𝑡

𝑡

∫
Δ2,𝑡

[𝑓 −1(𝐷)] .

Obviously, it is zero if 𝑓 avoids𝐷 . Note that in this case, we would have𝑇𝑓 ,𝜔 (𝑟 ) ≤ log(𝑟 ),
and the requested extension of 𝑓 follows directly from Lemma 3.3 below if 𝜔 were the
restriction of a Kähler form in 𝑌 on 𝑈 . Since 𝜔 is merely pseudo-Kähler and is only
dened on 𝑈 , one needs some additional work, which makes use of the condition that
𝜔 is closed.

By Lemma 1.15, the trivial extension of 𝜔 over 𝑌 , denoted by 𝜛, is a closed positive
current. Moreover, the cohomology class {𝜛} is big. By Theorem 1.11 there is a Kähler
current 𝑆2 ∈ {𝜛} which is a smooth Kähler form on 𝑌 − 𝐸𝑛𝐾 ({𝜛}). We also choose a
smooth closed (1, 1)-form 𝜂 ∈ {𝜛}.
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Claim 3.2. Fix any smooth Kähler metric 𝜔𝑌 over 𝑌 . For any 𝑓 : Δ∗ → 𝑌 with 𝑓 (Δ∗) ⊄
𝐸𝑛𝐾 ({𝜛}), there are positive constants 𝑐𝑖 so that

𝑇𝑓 ,𝜔 (𝑟 ) ≥ 𝑇𝑓 ,𝜂 (𝑟 ) − 𝑐4 log𝑇𝑓 ,𝜔𝑌 (𝑟 ) − 𝑐4 log 𝑟 − 𝑐5 ‖(3.6)
𝑇𝑓 ,𝜂 (𝑟 ) ≥ 𝑐6𝑇𝑓 ,𝜔𝑌 (𝑟 ) − 𝑐7 log 𝑟 − 𝑐8 ‖(3.7)
𝑇𝑓 ,𝜔𝑌 ≥ 𝑐9𝑇𝑓 ,𝜔 (𝑟 ) − 𝑐10 log 𝑟 − 𝑐11 ‖(3.8)

Proof of Claim 3.2. Write 𝐷 =
∑ℓ
𝑖=1𝐷𝑖 . Set 𝜎𝑖 to be a section 𝐻 0(𝑌,O𝑌 (𝐷𝑖)) dening 𝐷𝑖 ,

and pick a smooth metric ℎ𝑖 for O𝑌 (𝐷𝑖). Since 𝜂 ∈ {𝜛}, there is a quasi-psh function
𝜑 ≤ 0 dened on 𝑌 so that 𝜂 = 𝜛 − ddc𝜑 . By (1.3), one has

𝜑 ≥ −𝛿1 log(
ℓ∏
𝑖=1

log2 |𝜀 · 𝜎𝑖 |2ℎ𝑖 )

for some 𝛿1 > 0 and 𝜀 > 0. By Jensen’s formula, one has

𝑇𝑓 ,𝜔 (𝑟 ) −𝑇𝑓 ,𝜂 (𝑟 ) =
∫ 2𝜋

0
𝜑 ◦ 𝑓 (𝑟𝑒𝑖𝜃 )𝑑𝜃

2𝜋
−
∫ 2𝜋

0
𝜑 ◦ 𝑓 (2𝑒𝑖𝜃 )𝑑𝜃

2𝜋
− log

𝑟

2

∫ 2𝜋

0

𝜕𝜑 ◦ 𝑓 (2𝑒𝑖𝜃 )
𝜕𝑟

𝑑𝜃

2𝜋

≥ −𝛿1
∫ 2𝜋

0
log(

ℓ∏
𝑖=1

log2 |𝜀 · 𝜎𝑖 |2ℎ𝑖 ) ◦ 𝑓 (𝑟𝑒
𝑖𝜃 )𝑑𝜃

2𝜋
− 𝑐4 log 𝑟 − 𝑐5

By the concavity of log, one has

−
∫ 2𝜋

0
log(

ℓ∏
𝑖=1

log2 |𝜀 · 𝜎𝑖 |2·ℎ𝑖 ) ◦ 𝑓 (𝑟𝑒
𝑖𝜃 )𝑑𝜃

2𝜋
≥ −2

ℓ∑︁
𝑖=1

log
∫ 2𝜋

0
(− log |𝜀 · 𝜎𝑖 |2ℎ𝑖 ) ◦ 𝑓 (𝑟𝑒

𝑖𝜃 )𝑑𝜃
2𝜋

Using Jensen formula again, one obtains∫ 2𝜋

0
(− log |𝜀 · 𝜎𝑖 |2ℎ𝑖 ) ◦ 𝑓 (𝑟𝑒

𝑖𝜃 )𝑑𝜃
2𝜋

≤ 𝑇𝑓 ,Θℎ𝑖 (𝐷𝑖 ) (𝑟 ) +𝑂 (log 𝑟 ).

(3.6) follows from the fact that

𝑇𝑓 ,Θℎ𝑖 (𝐷𝑖 ) (𝑟 ) ≤ 𝛿2𝑇𝑓 ,𝜔𝑌 (𝑟 )

for some positive constants 𝛿2.
Since 𝑆2 and 𝜂 are both in {𝜛}, there is a quasi-psh function 𝜙 ≤ 0 dened on 𝑌 so

that 𝜂 = 𝑆2 − ddc𝜙 . Since 𝑆2 is smooth over𝑈0 := 𝑌 − 𝐸𝑛𝐾 (𝜛), and 𝑓 (Δ∗) ∩𝑈0 ≠ ∅, 𝑓 ∗𝑆2
is thus well dened on Δ∗. By Jensen formula again, so one has

𝑇𝑓 ,𝜂 (𝑟 ) −𝑇𝑓 ,𝑆2 (𝑟 ) = −
∫ 2𝜋

0
𝜙 ◦ 𝑓 (𝑟𝑒𝑖𝜃 )𝑑𝜃

2𝜋
+
∫ 2𝜋

0
𝜙 ◦ 𝑓 (2𝑒𝑖𝜃 )𝑑𝜃

2𝜋
− log

𝑟

2

∫ 2𝜋

0

𝜕𝜙 ◦ 𝑓 (2𝑒𝑖𝜃 )
𝜕𝑟

𝑑𝜃

2𝜋

(3.9)

≥ −𝑐7 log 𝑟 − 𝑐8.

On the other hand, 𝑆2 ≥ 𝜀𝜔𝑌 for some constant 𝜀 > 0 since 𝑆2 is a Kähler current, one
has

𝑇𝑓 ,𝑆2 (𝑟 ) ≥ 𝜀𝑇𝑓 ,𝜔𝑌 (𝑟 ).
This proves (3.7).

In a similar vein as in (3.9), one can prove that

𝑇𝑓 ,𝜂 (𝑟 ) −𝑇𝑓 ,𝜔 (𝑟 ) ≥ −𝛿3 log 𝑟 − 𝛿4.

Since 𝑇𝑓 ,𝜔𝑌 (𝑟 ) ≥ 𝛿5𝑇𝑓 ,𝜂 (𝑟 ), (3.8) follows. �
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Let us prove Theorem 3.1.(i). For any 𝑓 : Δ∗ → 𝑈 with 𝑓 (Δ∗) ⊄ 𝐸𝑛𝐾 ({𝜛}), one has
𝑁

[1]
𝑓 ,𝐷

(𝑟 ) = 0. Putting (3.6) and (3.7) into (3.5), we immediately conclude that 𝑇𝑓 ,𝜔𝑌 (𝑟 ) ∼
log 𝑟 when 𝑟 → ∞. This proves that 𝑓 extends across the point ∞ by Lemma 3.3 below,
hence𝑈 is Picard hyperbolic modulo 𝐸𝑛𝐾 ({𝜛}).
Let us prove (3.1). By Lemma 1.15 {𝜛} is big and nef. By Theorem 1.12, one has

𝐸𝑛𝐾 ({𝜛}) = Null({𝜛}) :=
⋃

∫
𝑍
{𝜛}dim𝑍=0

𝑍

where the union is taken over all positive dimensional irreducible analytic subvarieties
𝑍 in 𝑌 . If

𝑍 ⊄ 𝑌 − {𝑦 ∈ 𝑈 | 𝜔 is strictly positive at 𝑦}.
by (1.3) one has ∫

𝑍

{𝜛}dim𝑍 =

∫
𝑍 reg∩𝑈

𝜔dim𝑍 > 0.

This yields (3.1) by (1.12). (3.1) is proved.

Let us now prove Theorem 3.1.(ii). Since 𝑐{𝜛} − {𝐷} is big, by Theorem 1.11 one can
take a Kähler current 𝑆3 ∈ {𝑐𝜛} − {𝐷} which is smooth outside the non-Kähler locus
𝐸𝑛𝐾 ({𝑐𝜛} − {𝐷}). Let 𝑓 : Δ∗ → 𝑌 be a curve which is not contained in 𝐸𝑛𝐾 ({𝑐𝜛} −
{𝐷}) ∪ 𝐷 . Since {𝑆3 + [𝐷]} = {𝑐𝜛} = 𝑐{𝜂}, similar arguments as (3.9) show that

𝑐𝑇𝑓 ,𝜂 (𝑟 ) −𝑇𝑓 ,𝑆3+[𝐷] (𝑟 ) ≥ −𝑐9 log 𝑟 − 𝑐10.
Moreover,

𝑇𝑓 ,𝑆3+[𝐷] (𝑟 ) = 𝑇𝑓 ,𝑆3 (𝑟 ) +𝑇𝑓 ,[𝐷] (𝑟 ) ≥ 𝑐11𝑇𝑓 ,𝜔𝑌 (𝑟 ) + 𝑁
[1]
𝑓 ,𝐷

(𝑟 ).
Combining these inequalities with (3.6), (3.5) and (3.8), we conclude that𝑇𝑓 ,𝜔𝑌 (𝑟 ) ∼ log 𝑟 .
This proves that 𝑓 extends across the point∞ by Lemma 3.3 below. �

We state and prove the following criterion on the extendibility across the origin of the
holomorphic map from the punctured disk to a compact Kähler manifold.

Lemma 3.3. Let (𝑌,𝜔𝑌 ) be a compact Kähler manifold, and let 𝑓 : Δ∗ → 𝑌 be a holomor-
phic map from the punctured disk to 𝑌 . If

𝑇𝑓 ,𝜔𝑌 (𝑟 ) :=
∫ 𝑟

2

𝑑𝑡

𝑡

∫
Δ2,𝑡

𝑓 ∗𝜔𝑌

is bounded from above by 𝐶 log 𝑟 when 𝑟 → ∞ for some constant 𝐶 > 0. Here we consider
our model of the punctured disk as Δ∗ := {𝑧 ∈ C | 1 < |𝑧 | < ∞} by taking 𝑧 ↦→ 1

𝑧
. Then 𝑓

extends to a holomorphic map Δ∗ ∪ {∞} → 𝑌 .

Proof. We claim that
∫
Δ2,𝑡

𝑓 ∗𝜔𝑌 < 3𝐶 for any 𝑡 > 0. Or else, there is 𝑟0 > 0 so that∫
Δ2,𝑡

𝑓 ∗𝜔𝑌 ≥ 3𝐶 when 𝑡 ≥ 𝑟0. Then

𝑇𝑓 ,𝜔𝑌 (𝑟 ) ≥ 3𝐶 (log 𝑟 − log 𝑟0) ≥ 2𝐶 log 𝑟

if 𝑟 � 0. This contradicts with our assumption.
For simplicity, let us now change our model of the punctured disk to Δ∗ := {𝑧 ∈ C |

0 < |𝑧 | < 1} by taking 𝑧 ↦→ 1
𝑧
. Then one has∫

{𝑧∈C|0< |𝑧 |< 1
2 }
𝑓 ∗𝜔𝑌 < 3𝐶.

Consider the graph 𝑉 of 𝑓 , which is an one dimensional closed analytic subvariety of
Δ∗×𝑌 . Let us equip Δ×𝑌 with the Kähler metric𝜔′ := 𝑞∗1𝜔𝑒+𝑞∗2𝜔𝑌 , where𝑞1 : Δ×𝑌 → Δ
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and 𝑞2 : Δ × 𝑌 → 𝑌 is the projection map, and 𝜔𝑒 := 𝑖𝑑𝑧 ∧ 𝑑𝑧. Then the volume of the
analytic set 𝑉 ∩ {𝑧 | 0 < |𝑧 | < 1

2 } × 𝑌 with respect to the Kähler metric 𝜔′ is∫
{𝑧∈C|0< |𝑧 |< 1

2 }
𝑓 ∗𝜔𝑌 + 𝜔𝑒 ≤ 3𝐶 + 𝜋.

We now apply Theorem 1.14 to conclude that the closure of 𝑉 in Δ × 𝑌 , denoted by 𝑉 ,
is an one dimensional closed analytic subset. Hence the map 𝑞1 |𝑉 : 𝑉 → Δ is a proper
holomorphic map, which is an isomorphism over Δ∗. Therefore, 𝑞1 |𝑉 is moreover an
isomorphism. The composition 𝑞2 ◦ (𝑞1 |𝑉 )−1 : Δ → 𝑌 is a holomorphic map which
extends 𝑓 . The proposition is proved. �

Remark 3.4. Note that Lemma 3.3 is a well-known result when𝑌 is a projective manifold;
see e.g. [Dem97b, 2.11. Cas «local »] or [Siu15, Lemma 6.5]. For their strategy of the
proof, they use suciently many global rational functions on𝑌 to reduce the theorem to
holomorphic maps Δ∗ → P1 and then apply Nevanlinna’s logarithmic derivative lemma
to conclude. Our proof of Lemma 3.3 thus also provides an alternative and simplied
proof in the projective setting.

4. Criterion for algebraic hyperbolicity

In this section we will establish an algebraic analogue to Theorem 3.1.

Theorem4.1. Let (𝑌, 𝐷) be a compact Kähler log pair. Assume that𝑈 := 𝑌−𝐷 is equipped
with a pseudo-Kähler metric𝜔 whose holomorphic sectional curvature is bounded above by
a negative constant −2𝜋𝑐 , then
(i) 𝑈 is algebraic hyperbolic modulo 𝐸𝑛𝐾 ({𝜛}), where 𝜛 is the closed positive (1, 1)-

current on 𝑌 which is the trivial extension of 𝜔 .
(ii) If 𝑐{𝜛} − {𝐷} is a big class, then 𝑌 is algebraically hyperbolic modulo 𝐸𝑛𝐾 (𝑐{𝜛} −

{𝐷}) ∪ 𝐷 .

Proof. By Lemma 1.15, we know that {𝜛} is big. Let 𝐶 be any irreducible reduced
curve not contained in 𝐷 ∪ 𝐸𝑛𝐾 ({𝜛}). Set 𝜈 : 𝐶 → 𝐶 to be the normalization. Write
𝐶◦ := 𝜈−1(𝑈 ), and denote by 𝑃 := 𝜈−1(𝐷) the reduced divisor on𝐶 . By (3.1), 𝜈∗𝜔 is also a
pseudo-Kähler metric on𝐶◦. Since the holomorphic sectional curvature of 𝜔 is bounded
from above by a negative constant −𝑐 , by the curvature decreasing property, the holo-
morphic sectional curvature of 𝜈∗𝜔 is also bounded above by −2𝜋𝑐 . As in the proof of
Lemma 1.16, 𝜈∗𝜔 induces a singular hermitian metric ℎ𝐾

�̃�
+𝑃 whose curvature current is

positive. Moreover, by (1.5), one has

Θℎ𝐾
�̃�
+𝑃 (𝐾𝐶 + 𝑃) ≥ 𝑐𝜈∗𝜔

where 𝜈∗𝜔 is the closed positive current on 𝐶 which is the trivial extension of 𝜈∗𝜔 . By
(1.3), the Lelong numbers of the local potentials 𝜙 of 𝜛 are 0, so using 𝜈∗𝜛 loc

= 𝑑𝑑𝑐 (𝜙 ◦𝜈),
one can easily check that 𝜈∗𝜔 = 𝜈∗𝜛. Hence

2𝑔(𝐶) − 2 + 𝑖𝑌 (𝐶, 𝐷) =
∫
𝐶

Θℎ𝐾
�̃�
+𝑃 (𝐾𝐶 + 𝑃) ≥ 𝑐

∫
𝐶

𝜈∗𝜛 = 𝑐{𝐶} · {𝜛},(4.1)

where we use the notation in Denition 1.4.
Fix a Kähler form𝜔𝑌 on𝑌 . By Theorem 1.11 one can choose a Kähler current 𝑆1 ∈ {𝜛}

which is smooth outside 𝐸𝑛𝐾 ({𝜛}). Hence, there is a constant 𝜀 > 0 so that 𝑆1 ≥ 𝜀𝜔𝑌 .
Since 𝐶 is not contained in 𝐸𝑛𝐾 ({𝜛}, one has

{𝐶} · {𝜛} =
∫
𝐶

𝜈∗𝑆1 ≥ 𝜀
∫
𝐶

𝜈∗𝜔𝑌 = 𝜀 deg𝜔𝑌 𝐶.
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Putting this inequality into (4.1), we obtain

2𝑔(𝐶) − 2 + 𝑖𝑌 (𝐶, 𝐷) ≥ 𝑐𝜀 deg𝜔𝑌 𝐶.

The rst claim follows since 𝑐 > 0 and 𝜀 > 0 does not depend on 𝐶 .
If 𝑐{𝜛} − {𝐷} is big, by Theorem 1.11 again there is a Kähler current 𝑆2 ∈ 𝑐{𝜛} − {𝐷}

which is smooth outside 𝐸𝑛𝐾 (𝑐{𝜛} − {𝐷}). Hence there is a constant 𝜀2 > 0 so that
𝑆2 ≥ 𝜀2𝜔𝑌 . If 𝐶 is not contained in 𝐷 ∪ 𝐸𝑛𝐾 (𝑐{𝜛} − {𝐷}), by 𝑆2 + [𝐷] ∈ 𝑐{𝜛} one has

𝑐{𝐶} · {𝜛} =
∫
𝐶

𝜈∗(𝑆2 + 𝐷) ≥ 𝜀2
∫
𝐶

𝜈∗𝜔𝑌 + 𝑖𝑌 (𝐶, 𝐷) = 𝜀2 deg𝜔𝑌 𝐶 + 𝑖𝑌 (𝐶, 𝐷).

Putting this to (4.1), we obtain

2𝑔(𝐶) − 2 ≥ 𝜀2 deg𝜔𝑌 𝐶.

This proves the second claim. �

5. Proof of Theorem A

We are now ready to prove Theorem A.

Proof of Theorem A. Take a compact Kähler manifold 𝑌 compactifying 𝑈 so that 𝐷 :=
𝑌 − 𝑈 is simple normal crossing. By Proposition 2.1, the nilpotent harmonic bundle
induces a pseudo-Kähler metric𝜔 on𝑈 whose holomorphic bisectional curvature is non-
positive and holomorphic sectional curvature is bounded from above by − 1

2rank𝐸−1 . One
can then apply the criterion in [Cad16, Theorem 2] or [BC20, Theorem 1.6] to conclude
that𝑈 is of log general type. Alternatively, by Lemma 1.16,𝐾𝑌 +𝐷 ≥ 1

4rank𝐸−1·2𝜋 {𝜛}where
𝜛 is the closed positive current on 𝑌 which is the trivial extension of 𝜔 . Since {𝜛} is big,
𝐾𝑌 + 𝐷 is also big. This also proves that 𝑈 is of log general type. Hence 𝑌 is both a
Kähler and Moishezon manifold, hence projective. By Proposition 1.7.(i), any compact
complex manifold compactifying 𝑈 is bimeromorphic to 𝑌 . This proves the uniqueness
of algebraic structure of𝑈 by Chow’s theorem.
It follows from Theorems 3.1.(i) and 4.1.(i) that 𝑈 is pseudo-Picard hyperbolic and

pseudo-algebraically hyperbolic. �

A direct consequence of Theorems 3.1.(i) and 4.1.(i) is the following result.

Corollary 5.1. Let𝑈 be a quasi-projective manifold. If𝑈 is equipped with a Kähler metric
𝜔 with holomorphic sectional curvature bounded from above by a negative constant, then
𝑈 is Picard hyperbolic and algebraically hyperbolic. �

The above result gives a newproof of the following theorem byBorel [Bor72], Kobayashi-
Ochiai [KO71] and Pacienza-Rousseau [PR07].

Theorem 5.2. Let 𝑈 be a quasi-projective quotient of bounded symmetric domain by a
torsion free lattice. Then𝑈 is Picard hyperbolic and algebraically hyperbolic.

Proof. Since the Bergman metric on 𝑈 is Kähler with holomorphic sectional curvature
bounded from above by a negative constant, the Picard hyperbolicity and algebraic hy-
perbolicity of𝑈 follows from the above corollary immediately. �

6. Hyperbolicity for the compactification after finite unramified cover

In this section we will prove Theorem B using ideas similar to [Den20b, Proof of The-
orem 5.1].
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Theorem 6.1. Let (𝑌, 𝐷) be a compact Kähler log pair. Assume that there is a nilpotent
harmonic bundle (𝐸, 𝜃, ℎ) on𝑈 := 𝑌 −𝐷 so that 𝜃 : 𝑇𝑈 → End(𝐸) is injective at one point.
Then there is a log morphism 𝜇 : (𝑋, �̃�) → (𝑌, 𝐷) from a projective log pair (𝑋, �̃�) which
is a nite unramied cover over𝑈 such that

(i) any irreducible subvariety of𝑋 non contained in the analytic subvariety 𝜇−1(𝐸𝑛𝐾 ({𝜛}))∪
�̃� is of general type;

(ii) 𝑋 is Picard hyperbolic modulo 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃� ;
(iii) 𝑋 is algebraically hyperbolic modulo 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃� .
Here 𝜛 is the trivial extension of the pseudo-Kähler form 𝜔 = −𝑖tr(𝜃 ∗

ℎ
∧ 𝜃 ) on𝑈 dened in

(2.1). Moreover, we have

𝐸𝑛𝐾 ({𝜛}) ⊂ 𝑌 − {𝑦 ∈ 𝑈 | 𝜃 is injective at 𝑦}.(6.1)

We will need the following crucial result proved in [Den20b, Claim 5.2] to nd the
desired covering 𝜇 : 𝑋 → 𝑌 in Theorem 6.1. The proof is based on residual niteness of
the global monodromy group and Cauchy’s argument theorem.

Lemma 6.2. Let 𝑌 be a projective manifold and let 𝐷 =
∑ℓ
𝑗=1𝐷 𝑗 be a simple normal

crossing divisor on 𝑌 . Assume that there is a complex local system L over 𝑈 := 𝑌 − 𝐷 .
Then for any 𝑚 > 0, there is a smooth projective log pair (𝑋, �̃�) and a log morphism
𝜇 : (𝑋, �̃� =

∑𝑁
𝑖=1 �̃�𝑖) → (𝑌, 𝐷) which is unramied over 𝑈 so that for each 𝑗 = 1, . . . , ℓ ,

one has
• either ord�̃� 𝑗 (𝜇

∗𝐷) ≥ 𝑚,
• or the local monodromy group of 𝜇∗L around �̃� 𝑗 is trivial. �

Let us now prove Theorem 6.1.

Proof of Theorem 6.1. By the proof of Theorem A, 𝑌 is a projective manifold. For the
(1, 1)-form 𝜔 on𝑈 dened by

𝜔 = −𝑖tr(𝜃 ∗
ℎ
∧ 𝜃 ),(6.2)

by Lemma 1.16, we know that 𝜔 is a pseudo-Kähler form whose holomorphic sectional
curvature is bounded from above by − 1

4rank𝐸−1 . Let 𝜛 be the positive closed (1, 1)-current
on 𝑌 which is the trivial extension of 𝜔 . By Lemma 1.15, the class {𝜛} is big and nef.
Choose 𝜀 > 0 so that {𝜛} − 𝜀𝐷 is still big and

𝐸𝑛𝐾 ({𝜛} − 𝜀{𝐷}) = 𝐸𝑛𝐾 ({𝜛}) .(6.3)

Pick 𝑚 � 0 so that 𝑚𝜀 ≥ 22rank𝐸−1𝜋 . Let L be the local system relative to the tame
harmonic bundle. By Lemma 6.2, we nd a log morphism 𝜇 : (𝑋, �̃� =

∑𝑁
𝑖=1 �̃�𝑖) →

(𝑌, 𝐷) from a smooth projective log pair (𝑋, �̃�) which is unramied over 𝑈 satisfying
the properties therein.

Set𝐷𝑋 ⊂ �̃� to be the sum of all �̃� 𝑗 ’s so that the local monodromy group of 𝜇∗L around
�̃� 𝑗 is not trivial. Then by the dichotomy in Lemma 6.2, 𝜇∗𝐷 −𝑚𝐷𝑋 is an eective divisor,
and the monodromy of 𝜇∗L around �̃�𝑖 with �̃�𝑖 ⊄ 𝐷𝑋 is trivial. By Proposition 6.4 below,
the pull-back harmonic bundle extends to a nilpotent harmonic bundle over 𝑋 − 𝐷𝑋 .
Such a nilpotent harmonic bundle induces a pseudo-Kähler metric 𝜔2 on 𝑋 − 𝐷𝑋 . One
has 𝜔2 = 𝜇∗𝜔 over �̃� . 𝜔2 thus has non-positive holomorphic bisectional curvature and
holomorphic sectional curvature bounded from above by − 1

4rank𝐸−1 . Denote by 𝜛2 the
closed positive current which is the trivial extension of 𝜔2.

Claim 6.3. 𝜇∗𝜛 = 𝜛2.
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Proof of Claim 6.3. By the very denition of trivial extension, we have
(6.4) 𝜇∗𝜛 ≥ 𝜇∗𝜛 −𝜛2 ≥ 0.

Pick any point𝑥 ∈ �̃� , and choose admissible coordinates (Ω;𝑥1, . . . , 𝑥𝑛) and (Ω2;𝑦1, . . . , 𝑦𝑛)
around 𝑥 and 𝑦 = 𝜇 (𝑥) with 𝜇 (Ω1) ⊂ Ω2 so that Ω1 ∩ �̃� = (𝑥1 · · · 𝑥ℓ1 = 0) and
Ω2 ∩ 𝐷 = (𝑦1 · · ·𝑦ℓ2 = 0). Since 𝜇 is a log morphism, one has 𝜇∗𝑦𝑖 = 𝑔𝑖 (𝑥)

∏ℓ1
𝑗=1 𝑥

𝑎𝑖 𝑗
𝑗

with 𝑎𝑖 𝑗 ∈ Z≥0 and 𝑔𝑖 (𝑥) ∈ O(Ω1). By (1.3), the local potential 𝜙 of 𝜛 = ddc𝜙 satises

𝜙 & − log
( ℓ1∏
𝑗=1

(− log |𝑦 𝑗 |2)
)
.

Hence the local potential 𝜙 ◦ 𝜇 of 𝜇∗𝜛 = ddc𝜙 ◦ 𝜇 satises

𝜙 ◦ 𝜇 & − log
( ℓ2∏
𝑗=1

(− log |𝑥 𝑗 |2)
)
.

Therefore, the Lelong numbers of 𝜇∗𝜛 are zero everywhere, and by (6.4), the same holds
for the positive current 𝜇∗𝜛 − 𝜛2. On the other hand, since 𝜔2 = 𝜇∗𝜔 , 𝜇∗𝜛 − 𝜛2 is
thus supported on �̃� . By the support theorem [Dem12b, (2.14) Corollary], 𝜇∗𝜛 − 𝜛2 =∑𝑁
𝑖=1 𝜆𝑖 [�̃�𝑖] with 𝜆𝑖 ≥ 0. Hence 𝜇∗𝜛 −𝜛2 = 0. �

Note that
𝜇∗({𝜛} − 𝜀{𝐷}) = {𝜛2} − 𝜀{𝜇∗𝐷 −𝑚𝐷𝑋 } −𝑚𝜀{𝐷𝑋 }

= {𝜛2} − 22rank𝐸−1𝜋{𝐷𝑋 } − 𝜀{𝜇∗𝐷 −𝑚𝐷𝑋 } − (𝑚𝜀 − 22rank𝐸−1𝜋){𝐷𝑋 }.

Recall that 𝜇∗𝐷 −𝑚𝐷𝑋 ≥ 0, and𝑚𝜀 ≥ 22rank𝐸−1𝜋 . Hence

{𝜛2} − 22rank𝐸−1𝜋{𝐷𝑋 } = 𝜇∗({𝜛} − 𝜀{𝐷}) + {𝐷′}
where 𝐷′ is some eective R-divisor supported in �̃� . Therefore, {𝜛2} − 22rank𝐸−1𝜋{𝐷𝑋 }
is big with its non-Kähler locus

𝐸𝑛𝐾 ({𝜛2} − 22rank𝐸−1𝜋{𝐷𝑋 }) ⊂ 𝐸𝑛𝐾 (𝜇∗({𝜛} − 𝜀{𝐷})) ∪ �̃� .
Applying Lemma 6.5 below to {𝜛} − 𝜀{𝐷}, we obtain

𝐸𝑛𝐾 (𝜇∗({𝜛} − 𝜀{𝐷})) ⊂ 𝜇−1(𝐸𝑛𝐾 ({𝜛} − 𝜀{𝐷})) ∪ �̃� .
By (6.3), one has

𝐸𝑛𝐾 ({𝜛2} − 22rank𝐸−1𝜋{𝐷𝑋 }) ⊂ 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃� .(6.5)

Recall that the holomorphic sectional curvature of𝜔2 is bounded from above by− 1
4rank𝐸−1 .

By Theorems 3.1.(ii) and 4.1.(ii), we conclude that 𝑋 is both Picard hyperbolic and alge-
braically hyperbolic modulo 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃� . Theorems 6.1.(ii) and 6.1.(iii) follows.

Let𝑍 ⊂ 𝑋 be any irreducible closed subvarietywhich is not contained in 𝜇−1(𝐸𝑛𝐾 ({𝜛}))∪
�̃� . Let 𝑔 : 𝑍 → 𝑍 be a desingularization so that 𝐷𝑍 := 𝑔−1(𝐷𝑋 ) is a simple normal cross-
ing divisor. Applying Theorem 1.11 we can pick a Kähler current

𝑆 ∈ {𝜛2} − 22rank𝐸−1𝜋{𝐷𝑋 }
so that 𝑆 is smooth outside 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃� by (6.5). Since 𝑔(𝑍 ) is not contained
in 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃� , the pull-back 𝑔∗𝑆 exists and is a closed positive (1, 1) current in
𝑔∗{𝜛2} − 22rank𝐸−1𝜋𝑔∗{𝐷𝑋 }. Hence 𝑔∗{𝜛2} − 22rank𝐸−1𝜋𝑔∗{𝐷𝑋 } is pseudo eective.

Write 𝑍 ◦ := 𝑍 − 𝐷𝑍 . We claim that 𝜔3 := 𝑔∗𝜔2 is strictly positive at one point of 𝑍 ◦,
hence is a pseudo Kähler form on 𝑍 ◦. Or else,∫

𝑍

{𝜛2}dim𝑍 =

∫
𝑍 ◦
(𝑔∗𝜔2)dim𝑍 = 0,
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which implies that 𝑍 ∈ 𝐸𝑛𝐾 ({𝜛2}) by Theorem 1.12. Since

𝐸𝑛𝐾 ({𝜛2}) ⊂ 𝐸𝑛𝐾 ({𝜛2} − 22rank𝐸−1𝜋{𝐷𝑋 }) ⊂ 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃�,
this contradicts with the assumption that 𝑍 ⊂ 𝑋 is not contained in 𝜇−1(𝐸𝑛𝐾 ({𝜛})) ∪ �̃� .
Therefore, 𝜔3 is a pseudo Kähler form.

By the curvature decreasing property of submanifolds, we conclude that the holomor-
phic bisectional curvature of𝜔3 is non-positive, and the holomorphic sectional curvature
of 𝜔3 is bounded from above by − 1

4rank𝐸−1 . Let 𝜛3 be the closed positive (1, 1) current on
𝑍 which is the trivial extension of 𝜔3. One can employ a similar method as for Claim 6.3
to show that

𝑔∗{𝜛2} = {𝜛3}.
Recall that 𝑔∗{𝜛2} − 22rank𝐸−1𝜋𝑔∗{𝐷𝑋 } is pseudo eective. Since 𝑔∗𝐷𝑋 ≥ 𝐷𝑍 , {𝜛3} −
22rank𝐸−1𝜋{𝐷𝑍 } is thus also pseudo eective. By Lemma 1.16, one has

1
22rank𝐸−1𝜋

{𝜛3} ≤ 𝐾𝑍 + 𝐷𝑍 .

Hence 𝐾𝑍 is big. Theorem 6.1.(i) follows.
Lastly, by (6.2),𝜔 is strictly positive at any point where 𝜃 is injective. (6.1) then follows

from (3.1). �

We state and prove the following crucial extension result for nilpotent tame harmonic
bundles across the boundary components around which the local monodromies of the
corresponding local system are trivial. Its proof was communicated to us by C. Simp-
son, and it uses the deep theorem by Mochizuki on the correspondence between tame
pure imaginary harmonic bundles and semisimple local systems over quasi-projective
manifolds.

Proposition 6.4. Let 𝑌 be a projective manifold and let 𝐷 =
∑𝑚
𝑖=1𝐷𝑖 be a simple normal

crossing divisor on 𝑌 . Let (𝐸, 𝜃, ℎ) be a nilpotent harmonic bundle on 𝑈 := 𝑌 − 𝐷 , whose
corresponding complex local system is denoted by L. Assume that for 𝑖 = 1, . . . , 𝑟 the local
monodromy of L around the component 𝐷𝑖 is trivial. Then (𝐸, 𝜃, ℎ) extends to a nilpotent
harmonic bundle on𝑈 ′ := 𝑌 −∑𝑚

𝑖=𝑟+1𝐷𝑖 .

Proof. Since 𝜃 is assumed to be nilpotent, the eigenvalue of the residue Res(𝜃 ) at each
component 𝐷𝑖 is thus zero. Hence (𝐸, 𝜃, ℎ) is a tame pure imaginary harmonic bundle in
the sense of [Moc07, Denition 22.3]. By [Moc07, Proposition 22.15], L is semisimple.
Hence it is a direct sumL := ⊕𝛼L𝛼 ⊗C𝑚𝛼 , whereL𝛼 is a simple local system and𝑚𝛼 > 0.
Since the local monodromy of L around the component 𝐷𝑖 is trivial for 𝑖 = 1, . . . , 𝑟 , so
is L𝛼 for each 𝛼 . Hence L𝛼 extends to a local system L′

𝛼 on𝑈 ′. Since the map between
fundamental groups 𝜋1(𝑈 ) → 𝜋1(𝑈 ′) is surjective, L′

𝛼 is thus also simple.
By [Moc07, Theorem 25.21], there is a tame pure imaginary harmonic bundle (𝐸𝛼 , 𝜃𝛼 , ℎ𝛼 )

on 𝑈 whose corresponding local system is L𝛼 . Moreover, by the uniqueness property
of the correspondence between semisimple local systems and tame pure imaginary har-
monic bundles proved in [Moc07, Theorem 25.28], one has

(𝐸, 𝜃, ℎ) = ⊕𝛼
(
⊕𝑚𝛼

(𝐸𝛼 , 𝜃𝛼 ), ℎ𝛼 ⊗ 𝑔𝛼
)
,

where𝑔𝛼 denotes a hermitianmetric ofC𝑚𝛼 . Since 𝑡 rank𝐸 = det(𝑡−𝜃 ) = ∏
𝛼 det(𝑡−𝜃𝛼 )𝑚𝛼 ,

one has det(𝑡 − 𝜃𝛼 ) = 𝑡 rank𝐸𝛼 . Hence each (𝐸𝛼 , 𝜃𝛼 , ℎ𝛼 ) is a nilpotent harmonic bundle.
Again by [Moc07, Theorem 25.21], there is a tame pure imaginary harmonic bundle on

(𝐸′𝛼 , 𝜃 ′𝛼 , ℎ′𝛼 ) on𝑈 ′ whose corresponding local system is L′
𝛼 . The restriction (𝐸′𝛼 , 𝜃 ′𝛼 , ℎ′𝛼 ) |𝑈

is thus a tame pure imaginary harmonic bundle with the corresponding local system
L′
𝛼 |𝑈 = L𝛼 . By the uniqueness result in [Moc07, Theorem 25.28], (𝐸′𝛼 , 𝜃 ′𝛼 ) |𝑈 = (𝐸𝛼 , 𝜃𝛼 )

and 𝑐𝛼 · ℎ′𝛼 |𝑈 = ℎ𝛼 for some constant 𝑐𝛼 > 0. Since characteristic polynomial det(𝑡 −



HYPERBOLICITY OF VARIETIES ADMITTING HARMONIC BUNDLES 19

𝜃 ′𝛼 ) |𝑈 = det(𝑡−𝜃𝛼 ) = 𝑡 rank𝐸𝛼 , by continuity det(𝑡−𝜃 ′𝛼 ) = 𝑡 rank𝐸𝛼 on𝑈 ′. Hence (𝐸′𝛼 , 𝜃 ′𝛼 , ℎ′𝛼 )
is also nilpotent. Therefore, the nilpotent harmonic bundle

(𝐸′, 𝜃 ′, ℎ′) = ⊕𝛼
(
⊕𝑚𝛼

(𝐸′𝛼 , 𝜃 ′𝛼 ), 𝑐𝛼 · ℎ′𝛼 ⊗ 𝑔𝛼
)

dened on𝑈 ′ extends (𝐸, 𝜃, ℎ). The proposition is proved. �

The following result allows us to control non-Kähler locus on ramied covers.

Lemma 6.5. Let 𝜇 : (𝑋, �̃�) → (𝑌, 𝐷) be a log morphism between compact Kähler log
pairs, which is unramied over 𝑋 − �̃� . Let 𝛼 be a big class on 𝑌 . Then

𝐸𝑛𝐾 (𝜇∗𝛼) ⊂ 𝜇−1(𝐸𝑛𝐾 (𝛼)) ∪ �̃�(6.6)

Proof. By Theorem 1.11, one can take a Kähler current 𝑇 ∈ 𝛼 with analytic singularities
which is smooth outside 𝐸𝑛𝐾 (𝛼). Choose a Kähler form 𝜔 on 𝑌 so that 𝑇 ≥ 𝜔 . Then
{𝜇∗𝜔} is a big and nef class, and by Theorem 1.12, one has

𝐸𝑛𝐾 ({𝜇∗𝜔}) ⊂ �̃� .

Applying Theorem 1.11 again, there is a global quasi-psh function 𝜑 on 𝑋 with analytic
singularities which is smooth outside �̃� so that 𝜇∗𝜔 + ddc𝜑 is a Kähler current on 𝑋 .
It follows from 𝑇 ≥ 𝜔 that 𝜇∗𝑇 + ddc𝜑 ≥ 𝜇∗𝜔 + ddc𝜑 . Hence 𝜇∗𝑇 + ddc𝜑 is a Kähler
current with analytic singularities, which is smooth outside 𝜇−1(𝐸𝑛𝐾 (𝛼)) ∪ �̃� . Since
𝜇∗𝑇 + ddc𝜑 ∈ 𝜇∗𝛼 , by the very denition of non-Kähler locus Denition 1.10, one has

𝐸𝑛𝐾 (𝜇∗𝛼) ⊂ 𝜇−1(𝐸𝑛𝐾 (𝛼)) ∪ �̃� .
The lemma is proved. �

References
[BB20] D. Brotbek and Y. Brunebarbe. Arakelov-Nevanlinna inequalities for variations of Hodge

structures and applications. arXiv e-prints, (2020) arXiv:2007.12957. ↑ 2, 3, 10
[BBT18] B. Bakker, Y. Brunebarbe and J. Tsimerman. o-minimal GAGA and a conjecture of Griths.

arXiv e-prints, (2018) arXiv:1811.12230. ↑ 2
[BC20] Y. Brunebarbe and B. Cadorel. Hyperbolicity of varieties supporting a variation of Hodge

structure. Int. Math. Res. Not., 2020(2020) 1601–1609. ↑ 15
[Bis64] E. Bishop. Conditions for the analyticity of certain sets. Mich. Math. J., 11(1964) 289–304. ↑ 6
[Bor72] A. Borel. Some metric properties of arithmetic quotients of symmetric spaces and an extension

theorem. J. Dierential Geometry, 6(1972) 543–560. ↑ 15
[Bou02] S. Boucksom. On the volume of a line bundle. Int. J. Math., 13(2002) 1043–1063. ↑ 6
[Bou04] S. Boucksom. Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École

Norm. Sup. (4), 37(2004) 45–76. ↑ 6
[Bru18] Y. Brunebarbe. Symmetric dierentials and variations of Hodge structures. J. Reine Angew.

Math., 743(2018) 133–161. ↑
[Bru20a] Y. Brunebarbe. A strong hyperbolicity property of locally symmetric varieties. Ann. Sci. Éc.

Norm. Supér. (4), 53(2020) 1545–1560. ↑ 3
[Bru20b] Y. Brunebarbe. Increasing hyperbolicity of varieties supporting a variation of Hodge structures

with level structures. arXiv e-prints, (2020) arXiv:2007.12965. ↑ 2, 3, 7
[Cad16] B. Cadorel. Symmetric dierentials on complex hyperbolic manifolds with cusps. arXiv e-

prints, (2016) arXiv:1606.05470. To appear in J. Dierential Geom. ↑ 7, 15
[Cad18] B. Cadorel. Subvarieties of quotients of bounded symmetric domains. arXiv e-prints, (2018)

arXiv:1809.10978. ↑ 3
[Che04] X. Chen. On algebraic hyperbolicity of log varieties. Commun. Contemp. Math., 6(2004) 513–

559. ↑ 4
[CT15] T. C. Collins and V. Tosatti. Kähler currents and null loci. Invent. Math., 202(2015) 1167–1198.

↑ 6
[Dem92] J.-P. Demailly. Regularization of closed positive currents and intersection theory. J. Algebraic

Geom., 1(1992) 361–409. ↑ 7



20 BENOÎT CADOREL AND YA DENG

[Dem97a] J.-P. Demailly. Algebraic criteria for Kobayashi hyperbolic projective varieties and jet dier-
entials. In Algebraic geometry—Santa Cruz 1995, vol. 62 of Proc. Sympos. Pure Math., 285–360.
Amer. Math. Soc., Providence, RI (1997). ↑ 4

[Dem97b] J.-P. Demailly. Variétés hyperboliques et équations diérentielles algébriques. Gaz. Math.,
(1997) 3–23. ↑ 14

[Dem12a] J.-P. Demailly.Analytic methods in algebraic geometry, vol. 1 of Surveys of ModernMathematics.
International Press, Somerville, MA; Higher Education Press, Beijing (2012). ↑ 5

[Dem12b] J.-P. Demailly. Complex analytic and dierential geometry. Online e-book (2012). ↑ 6, 17
[Den20a] Y. Deng. A characterization of complex quasi-projective manifolds uniformized by unit balls.

arXiv e-prints, (2020) arXiv:2006.16178. ↑ 7
[Den20b] Y. Deng. Big Picard theorem and algebraic hyperbolicity for varieties admitting a variation of

Hodge structures. arXiv e-prints, (2020) arXiv:2001.04426. ↑ 1, 2, 3, 4, 5, 15, 16
[DLSZ19] Y. Deng, S. Lu, R. Sun and K. Zuo. Picard theorems for moduli spaces of polarized varieties.

arXiv e-prints, (2019) arXiv:1911.02973. ↑ 2, 3
[Ete20] A. Etesse. Complex-analytic intermediate hyperbolicity, and niteness properties. arXiv e-

prints, (2020) arXiv:2011.12583. ↑ 1
[HR21] Y. He and M. Ru. Nevanlinna Pair and Algebraic Hyperbolicity. arXiv e-prints, (2021)

arXiv:2102.04624. ↑ 1
[JK18] A. Javanpeykar and R. A. Kucharczyk. Algebraicity of analytic maps to a hyperbolic variety.

arXiv e-prints, (2018) arXiv:1806.09338. ↑ 1, 2
[KO71] S. Kobayashi and T. Ochiai. Satake compactication and the great Picard theorem. J. Math.

Soc. Japan, 23(1971) 340–350. ↑ 15
[Mil13] J. S. Milne. Shimura varieties and moduli. In Handbook of moduli. Volume II, 467–548.

Somerville, MA: International Press; Beijing: Higher Education Press (2013). ↑
[Moc07] T. Mochizuki.Asymptotic behaviour of tame harmonic bundles and an application to pure twistor

𝐷-modules. II, vol. 870. Providence, RI: American Mathematical Society (AMS) (2007). ↑ 18
[Mum77] D. Mumford. Hirzebruch’s proportionality theorem in the non-compact case. Invent. Math.,

42(1977) 239–272. ↑ 3
[Nad89] A. M. Nadel. The nonexistence of certain level structures on abelian varieties over complex

function elds. Ann. Math. (2), 129(1989) 161–178. ↑
[NW14] J. Noguchi and J. Winkelmann. Nevanlinna theory in several complex variables and Diophan-

tine approximation, vol. 350 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer, Tokyo (2014). ↑ 11

[PR07] G. Pacienza and E. Rousseau. On the logarithmic Kobayashi conjecture. J. Reine Angew. Math.,
611(2007) 221–235. ↑ 4, 15

[Rou16] E. Rousseau. Hyperbolicity, automorphic forms and Siegel modular varieties. Ann. Sci. Éc.
Norm. Supér. (4), 49(2016) 249–255. ↑ 3

[Sim92] C. T. Simpson. Higgs bundles and local systems. Publ. Math., Inst. Hautes Étud. Sci., 75(1992)
5–95. ↑ 9

[Siu75] Y.-T. Siu. Extension of meromorphic maps into Kähler manifolds. Ann. Math. (2), 102(1975)
421–462. ↑ 5

[Siu15] Y.-T. Siu. Hyperbolicity of generic high-degree hypersurfaces in complex projective space. In-
vent. Math., 202(2015) 1069–1166. ↑ 14

[Yam19] K. Yamanoi. Pseudo Kobayashi hyperbolicity of subvarieties of general type on abelian vari-
eties. J. Math. Soc. Japan, 71(2019) 259–298. ↑ 10

Institut Élie Cartan de Lorraine, Université de Lorraine, F-54000 Nancy, France.
Email address: benoit.cadorel@univ-lorraine.fr
URL: http://www.normalesup.org/~bcadorel/

CNRS, Institut Élie Cartan de Lorraine, Université de Lorraine, F-54000 Nancy, France.
Email address: ya.deng@univ-lorraine.fr ya.deng@math.cnrs.fr
URL: https://ydeng.perso.math.cnrs.fr


	0. Introduction
	Notations
	1. Technical preliminaries
	2. Pseudo-Kähler metrics induced by nilpotent harmonic bundles
	3. Criterion for Picard hyperbolicity
	4. Criterion for algebraic hyperbolicity
	5. Proof of main
	6. Hyperbolicity for the compactification after finite unramified cover
	References

